
Constrained minimization of Manhattan distance

for voting on budgets

Jan Behrens

2025-02-23 13:30 UTC

1 Problem

We have a certain budget or resource, e. g. 1000 person hours or $ 1,000,000
to be assigned to d candidates (e.g. projects). We assume n voters, which
each propose a relative budget allocation for each candidate, e.g. (0.6, 0.3, 0.1)
if he/she/they wants to assign 60% of the total budget to the first, 30% to
the second, and 10% to the third candidate. In the following, X ∈ Rn×d is a
n × d matrix containing all candidates as columns and all voters as rows. Xij

is voter i’s desired relative budget for candidate j.
We assert certain constraints on the voters’ ballots. Inequations (1) below

state that no voter can spend less than 0% or more than 100% on a particular
candidate on their respective ballot, and equations (2) state that each voter
must use 100% of the total budget1.

∀i∀j : 0 ≤ Xij ≤ 1 (1)

∀i :
d∑

j=1

Xij = 1 (2)

We now search for a suitable voting algorithm f : X 7→ w, which maps all
votes X to a result w that assigns each candidate j a certain budget wj ∈ [0, 1].
For the output w of the voting algorithm, we demand

∑
wj = 1 such that the

total available budget is spent, but not more.

∀j : 0 ≤ wj ≤ 1 (3)

d∑
j=1

wj = 1 (4)

f :

X ∈ [0, 1]n×d | ∀i :
d∑

j=1

Xij = 1

 →

x ∈ [0, 1]d |
d∑

j=1

xj = 1

 (5)

f : X 7→ w (6)

Moreover, the algorithm f shall be designed in such a way that each voter
has little incentive for tactical voting.

1Note that in cases where there should be an option to not spend all resources, it’s always
possible to add another candidate labeled “save the money/resource”, if desired.

1

2 Definitions and notation

In the following, Xi (without j) shall denote the i-th row of matrix X, i. e.
voter i’s ballot, as a (column) vector; whereas Xij or Xi,j is the element in the
i-th row and j-th column, i. e. voter i’s assigned relative budget for candidate j.
rank(Xij − X1,j) is the rank of a matrix created by substracting the first row
of X from each row in X.

Let further ∥x∥1 denote the Manhattan norm and ∥x∥2 the Euclidean norm
of vector x, i.e.:

∥x∥1 =
∑
j

|xj | (7)

∥x∥2 =

√∑
j

x2
j (8)

3 1-dimensional case

If d = 2, there is a well-known solution to the problem because due to equation
(2), the budgets on each ballot will lay on a line:

Xi ∈
{(

x1

1− x1

)
∈ R2 | 0 ≤ x1 ≤ 1

}
(9)

Here, the 1-dimensional median can be used as a solution to the problem
and there will be no incentive2 for tactical voting:

w1 = medianXi,1 (10)

w =

(
w1

1− w1

)
(11)

Unfortunately this method cannot be used for d > 2 because there exists no
useful ordering for Rd−1 if d > 2, which is a requirement for the median.

4 Proposed algorithm for higher dimensions

If rank(Xij −X1,j) ≤ 1, which is the case when all ballots Xi lay on a straight
line in Rd, then we use the component-wise median3 as w. In all other cases,
determine the sets M ⊆ Rd as well as W ⊆ Rd and pick w as follows:

M = argmin
x∈Rd,

∑
j

xj=1

n∑
i=1

d∑
j=1

|xj −Xij | = argmin
x∈Rd,

∑
j

xj=1

n∑
i=1

∥x−Xi∥1 (12)

W = argmin
x∈M

n∑
i=1

√√√√ d∑
j=1

(xj −Xij)2 = argmin
x∈M

n∑
i=1

∥x−Xi∥2 (13)

w ∈ W (14)

2This holds for an odd number of voters. In case of an even number of voters, this depends
on the tie-breaker.

3wj = mediani(Xij). In case of an even number of voters, we use the arithmetic mean of
the two middle values, respectively.

2

Here,
∑

xj = 1 in equation (12) ensures that, according to (4), not more
and not less than the total available budget is used. M is the subset of Rd which
minimizes the sum of Manhattan distances under that condition, and M may
contain an infinite number of possible solutions. W reduces the set of solutions
to a singleton (i. e. |W | = 1 and W = {w}) by demanding that the sum of
Euclidean distances is minimal without violating the previous optimization.

5 Reasoning

5.1 Minimization of Manhattan distances

The overall idea of the algorithm is to minimize the sum of Manhattan distances
between the output w and the ballots Xi.

This can be seen as an equillibrium process where each voter tries to increase
the budgets for those candidates where they desire a higher budget and to reduce
the budgets for those candidates where they desire a lower budget, and where
each voter can transfer the same amount at the same time but not increase or
reduce the total budget spent (i.e. each increase must have an accompanying
reduction). Because it doesn’t matter how much higher or lower a voter’s wish
for a particular candidate’s budget is in this process, there is little incentive for
tactical voting; i. e. there is little incentive to express polarized opinions where
a voter, for example, assigns all resources to one candidate in the attempt to
increase that candidate’s budget further.

5.2 Remaining potential for tactical voting

During the equillibrium process outlined in the previous subsection, all candi-
dates are treated equally. This means that for each voter, the algorithm doesn’t
distinguish from which candidate the budget is removed or to which candidate
the budget is added. Assuming that some voters might have a strong opinion
on the budget for one candidate but might not care for the budget on other can-
didates, this unfortunately still leaves room for strategic optimization of one’s
ballot. In particular, it may be advisable for a voter i to orient his/her/their
budget assignments for those candidates they don’t care much about toward the
other voters in order to avoid spending their voting power on those candidates.

On the positive side, this doesn’t seem to foster extreme polarization as
long as the other voters’ behavior is largely known4. Moreover, addressing this
problem would likely require a more complex input. We could seek algorithms
that allow each voter to express certain preferences, e. g “I want candidate 1’s
budget to be $ 2,000, but I don’t care much about candidate 2 and 3.” However,
such an approach isn’t complete as the preferences might be even more specific,
such as “I want candidate 1’s budget to be $ 2,000, and candidate 2 and 3
should get a budget of $ 1,000 in total, but I don’t care how much of those
$ 1,000 is assigned to candidate 2 and how much to candidate 3.” Complexity
for the voters when filling out their ballots might increase drastically with such
an approach.

4If voters possess only little knowledge about the other voters and if a voter is okay with
spending as much resources as possible on a set of candidates, then it may, for example, make
sense to vote on certain other candidates with 0% in order to be absolutely sure to not “waste”
voting weight on a candidate which the voter doesn’t care much about.

3

5.3 Tie-breaking

Minimization of the sum of Manhattan distances may not be sufficient to deter-
mine a single (optimal) result. Thus an additional tie-breaker is needed. The
tie-breaker used in the proposed algorithm is chosen according to calculation
of the geometric median, which minimizes the sum of the Euclidean distances.
The geometric median is well-defined, except if the inputs lay on a line, i. e.
rank(Xij −X1,j) ≤ 1, in which case the component-wise median can be used.

5.4 Comparison with component-wise median and geo-
metric median

5.4.1 Component-wise median

Always using the component-wise median may yield results where more than
100% or less than 100% of the total budget is spent, i. e. violation of equa-
tion (4). Attempting linear scaling of the result would violate the optimization
performed in equation (12), however.

Another option would be to calculate the component-wise median for d− 1
candidates and assign one candidate the remaining budget. Apart from the
problem that this remaining budget might be negative, resulting in violation of
(3), the choice of that candidate has an impact on the voting result as can easily
be seen in example E4 from the next section.

5.4.2 Geometric median

Using the geometric median not only as a tie-breaker but as a final result would
correspond to voters being willing to reduce a candidate’s budget even if they de-
noted a higher budget for that candidate on their ballot as long as the quadratic
error is improved. This seems unreasonable unless the dimensions are somehow
related to one another (e. g when deciding on a location on a two-dimensional
plane), which is generally not true in case of budget allocation.

4

6 Examples

The following examples Ek have been calculated with the computer program
given in the next section.

E1 =

100% 0%
58% 42%
0% 100%

 (15)

f(E1) =
(
58% 42%

)T
= g (16)

E2 =

60% 30% 10%
20% 60% 20%
25% 25% 50%

 (17)

f(E2) ≈
(
33.11% 39.60% 27.28%

)T
= g (18)

E3 =

60% 30% 10%
20% 60% 20%
0% 0% 100%

 (19)

f(E3) ≈
(
30.28% 42.39% 27.34%

)T
= g (20)

E4 =



60% 30% 10%
60% 30% 10%
60% 30% 10%
60% 30% 10%
60% 30% 10%
20% 60% 20%
20% 60% 20%
20% 60% 20%
0% 0% 100%
0% 0% 100%
0% 0% 100%
0% 0% 100%



(21)

f(E3) =
(
50% 30% 20%

)T ̸= g (22)

In example E1, the component-wise median is used (which is always the case
for d = 2). In examples E2 and E3, tie-breaking using Euclidean distances is
used and the results here are also equivalent to the geometric median g. Example
E4 shows a case where tie-breaking is not needed and the geometric median or
Euclidean distances have no influence on the result. Instead, minimization of
the sum of Manhattan distances under the constraint that 100% of the budget
is spent is sufficient to determine the outcome.

5

7 Implementation in Octave

1function w = budget_voting(X)
2# usage: budget_voting(X)
3#
4# X is a matrix with voters as rows and candidates as columns; each entry
5# reflects a relative budget assigned by the voter to the candidate.
6#
7# The function returns a column vector of relative budget assignments for
8# each candidate such that the sum of Manhattan distances is minimized
9# and the total budget is spent. The Euclidean distance and , as a
10# fallback , the 1-dimensional median are used as tie -breaker.
11

12# Xt is X transposed , i.e. candidates as rows and voters as columns.
13# Xtn is Xn normalized such that each voter assigns a total budget of 1.
14# n is the number of voters and d is the number of candidates.
15# avg is the arithmetic mean of all ballots.
16Xt = transpose(X);
17Xtn = Xt ./ sum(Xt , 1);
18n = columns(Xtn); d = rows(Xtn);
19avg = mean(Xtn , 2);
20

21# Handle the 1-dimensional case:
22if rank(Xtn - avg) <= 1; w = median(Xtn , 2); return; endif
23

24# lb are the lower and ub are the upper bounds.
25lb = zeros(d, 1); ub = ones(d, 1);
26

27# cnd1(x) is zero if sum(x)=1.
28# cnd1_grad_t is gradient of cnd1 as a row vector.
29cnd1 = @(x) sum(x, 1) - 1;
30cnd1_grad_t = @(x) ones(1, d);
31

32# obj1 is the first objective function to minimize.
33# obj1_grad is the gradient of obj1 as a column vector.
34obj1 = @(x) sum(sum(abs(x-Xtn), 1), 2);
35obj1_grad = @(x) sum(sign(x-Xtn), 2);
36

37# Optimize for obj1:
38w = sqp(
39avg , {obj1 , obj1_grad}, # start value , objective function , gradient
40{cnd1 , cnd1_grad_t}, # equality constraints
41[], lb, ub, # inequality constraints , lower/upper bounds
421000 # max iterations
43);
44

45# Normalize in case of numerical errors and determine optimal error:
46w = w / sum(w, 1);
47opt1 = obj1(w);
48

49# cnd2(x) >= 0 for all rows if obj1(x) is minimal (within tolerance tol).
50# cnd2_grad_m is gradient of cnd2 as a matrix.
51tol = n * d * eps;
52cnd2 = @(x) tol + opt1 - obj1(x);
53cnd2_grad_m = @(x) -obj1_grad(x)’;
54

55# obj2 is the second objective function to minimize.
56# obj2_grad is the gradient of obj2 as a column vector.
57obj2 = @(x) sum(sqrt(sum((x-Xtn).^2, 1)), 2);
58obj2_grad = @(x) sum((x-Xtn) ./ sqrt(sum((x-Xtn).^2, 1)), 2);
59

60# Optimize for obj2:
61w = sqp(
62w, {obj2 , obj2_grad}, # start value , objective function , gradient
63{cnd1 , cnd1_grad_t}, # equality constraints
64{cnd2 , cnd2_grad_m}, # inequality constraints
65lb, ub , # lower/upper bounds
661000 # max iterations
67);
68

69# Normalize in case of numerical errors:
70w = w / sum(w, 1);
71end

6

