
Constrained minimization of Manhattan distance

for voting on budgets

Jan Behrens

2024-11-06 10:10 UTC

1 Problem

We have a certain budget or resource, e. g. 1000 person hours or $ 1,000,000
to be assigned to d candidates (e.g. projects). We assume n voters, which
each propose a relative budget allocation for each candidate, e.g. (0.6, 0.3, 0.1)
if he/she/they wants to assign 60% of the total budget to the first, 30% to
the second, and 10% to the third candidate. In the following, X ∈ Rn×d is a
n × d matrix containing all candidates as columns and all voters as rows. Xij

is voter i’s desired relative budget for candidate j.
We assert certain constraints on the voters’ ballots. Equations (1) below

ensure that no voter can spend less than 0% or more than 100% on a particular
candidate on their respective ballot, and equations (2) ensure that each voter
must use 100% of the total budget1.

∀i∀j : 0 ≤ Xij ≤ 1 (1)

∀i :
d∑

j=1

Xij = 1 (2)

We now search for a suitable voting algorithm f : X 7→ w, which maps all
votes X to a result w that assigns each candidate j a certain budget wj ∈ [0, 1].
For the output w of the voting algorithm, we demand

∑
wj = 1 such that the

total available budget is spent, but not more.

∀j : 0 ≤ wj ≤ 1 (3)

d∑
j=1

wj = 1 (4)

f :

X ∈ [0, 1]n×d | ∀i :
d∑

j=1

Xij = 1

 →

x ∈ [0, 1]d |
d∑

j=1

xj = 1

 (5)

f : X 7→ w (6)

Moreover, the algorithm f shall be designed in such a way that each voter
has little incentive for tactical voting.

1Note that in cases where there should be an option to not spend all resources, it’s always
possible to add another candidate labeled “save the money/resource”, if desired.

1



2 Definitions and notation

In the following, Xi (without j) shall denote the i-th row of matrix X, i. e.
voter i’s ballot, as a (column) vector; whereas Xij or Xi,j is the element in the
i-th row and j-th column, i. e. voter i’s assigned relative budget for candidate j.

Let further ∥x∥1 denote the Manhattan norm and ∥x∥2 the Euclidean norm
of vector x, i.e.:

∥x∥1 =
∑
j

|xj | (7)

∥x∥2 =

√∑
j

x2
j (8)

3 1-dimensional case

If d = 2, there is a well-known solution to the problem because due to equation
(2), the budgets on each ballot will lay on a line:

Xi ∈
{(

x1

1− x1

)
∈ R2 | 0 ≤ x1 ≤ 1

}
(9)

Here, the 1-dimensional median can be used as a solution to the problem
and there will be no incentive2 for tactical voting:

w1 = medianXi,1 (10)

w =

(
w1

1− w1

)
(11)

Unfortunately this method cannot be used for d > 2 because there exists no
useful ordering for Rd−1 if d > 2, which is a requirement for the median.

4 Proposed algorithm for higher dimensions

We first calculate the geometric median g:

g = argmin
x∈Rd

n∑
i=1

√√√√ d∑
j=1

(xj −Xij)2 (12)

= argmin
x∈Rd

n∑
i=1

∥x−Xi∥2 (13)

Note that g may be undefined in the rare case of n being even and all votes
being on a 1-dimensional line. In this case, we use the 1-dimensional median
and take the arithmetic mean of the two middle values.3

2This holds for an odd number of voters. In case of an even number of voters, this depends
on the tie-breaker.

3This value is then also the final result w of the algorithm.

2



Now the assigned budgets wj are:

w = argmin
x∈Rd,

∑
j

xj=1

∑d
j=1 |xj − gj |

2
+

n∑
i=1

d∑
j=1

|xj −Xij |

 (14)

= argmin
x∈Rd,

∑
j

xj=1

[
∥x− g∥1

2
+

n∑
i=1

∥x−Xi∥1

]
(15)

Here,
∑

xj = 1 ensures that, according to (4), not more and not less than

the total available budget is used and ∥x−g∥1

2 serves as a tie-breaker, which
corresponds to adding half a vote for the geometric median.

5 Reasoning

Disregarding the tie-breaking and the constraint that the budget must be spent
and not be exceeded, the definition of w corresponds to minimizing the sum
of Manhattan distances between w and the votes Xi. This can be seen as an
equillibrium process where each voter tries to increase the budgets for those
candidates where they desire a higher budget and to reduce the budgets for
those candidates where they desire a lower budget, and where each voter can
transfer the same amount at the same time but not increase or reduce the total
budget spent (i.e. each increase must have an accompanying reduction). Be-
cause it doesn’t matter how much higher or lower a voter’s wish for a particular
candidate’s budget is in this process, there is little incentive for tactical voting;
i. e. there is little incentive to express polarized opinions where a voter, for ex-
ample, assigns all resources to one candidate in the attempt to increase that
candidate’s budget further.

However, during this process, all candidates are treated equally. This means
that for each voter, the algorithm doesn’t distinguish from which candidate
the budget is removed or to which candidate the budget is added. Assuming
that some voters might have a strong opinion on the budget for one candidate
but might not care for the budget on other candidates, this unfortunately still
leaves room for strategic optimization of one’s ballot. In particular, it may
be advisable for a voter i to orient his/her/their budget assignments for those
candidates they don’t care much about toward the other voters in order to avoid
spending their voting power on those candidates.

One solution to this problem could be to seek algorithms that allow each
voter to express certain preferences, e. g “I want candidate 1’s budget to be
$ 2,000, but I don’t care much about candidate 2 and 3.” However, such an
approach isn’t complete as the preferences might be even more specific, such as
“I want candidate 1’s budget to be $ 2,000, and candidate 2 and 3 should get a
budget of $ 1,000 in total, but I don’t care how much of those $ 1,000 is assigned
to candidate 2 and how much to candidate 3.” Complexity for the voters when
filling out their ballots might increase drastically with such an approach.

3



6 Comparison with component-wise median and
geometric median

6.1 Component-wise median

The component-wise median may yield results where more than 100% or less
than 100% of the total budget is spent, i. e. violation of equation (4). At-
tempting linear scaling of the result would violate the optimization performed
in equation (14)/(15), however.

Another option would be to calculate the component-wise median for d− 1
candidates and assign one candidate the remaining budget. Apart from the
problem that this remaining budget might be negative, resulting in violation of
(3), the choice of that candidate has an impact on the voting result as can easily
be seen in example E4 from the next section.

6.2 Geometric median

Using the geometric median not only as a tie-breaker but as a final result would
correspond to voters being willing to reduce a candidate’s budget even if they de-
noted a higher budget for that candidate on their ballot as long as the quadratic
error is improved. This seems unreasonable unless the dimensions are somehow
related to one another (e. g when deciding on a location on a two-dimensional
plane), which is generally not true in case of budget allocation.

4



7 Examples

The following examples Ek have been calculated with the computer program
given in the next section.

E1 =

100% 0%
58% 42%
0% 100%

 (16)

f(E1) =
(
58% 42%

)T
= g (17)

E2 =

60% 30% 10%
20% 60% 20%
25% 25% 50%

 (18)

f(E2) ≈
(
33.11% 39.60% 27.28%

)T
= g (19)

E3 =

60% 30% 10%
20% 60% 20%
0% 0% 100%

 (20)

f(E3) ≈
(
30.28% 42.39% 27.34%

)T
= g (21)

E4 =



60% 30% 10%
60% 30% 10%
60% 30% 10%
60% 30% 10%
60% 30% 10%
20% 60% 20%
20% 60% 20%
20% 60% 20%
0% 0% 100%
0% 0% 100%
0% 0% 100%
0% 0% 100%



(22)

f(E3) =
(
50% 30% 20%

)T ̸= g (23)

In examples E1 through E3, tie-breaking is used and the results are also
equivalent to the geometric median g. Example E4 shows a case where tie-
breaking is not needed and the geometric median has no influence on the result.

5



8 Implementation in Octave

1function w = budget_voting(X)
2

3# usage: budget_voting(X)
4#
5# X is a matrix with voters as rows and candidates as columns; each entry
6# reflects a relative budget assigned by the voter to the candidate.
7#
8# The function returns a column vector of relative budget assignments for
9# each candidate such that the Manhattan distance is minimized and the
10# total budget is spent. The geometric median and , as a fallback , the
11# 1-dimensional median are used as tie -breaker.
12

13# Xt is X transposed , i.e. candidates as rows and voters as columns.
14Xt = transpose(X);
15

16# Xtn is Xn normalized such that each voter assigns a total budget of 1.
17Xtn = Xt ./ sum(Xt , 1);
18

19# Handle the 1-dimensional case:
20if rank(Xtn - mean(Xtn , 2)) <= 1
21w = median(Xtn , 2);
22return
23endif
24

25# eudists(x) contains the Euclidean distances between x and each vote.
26eudists = @(x) sqrt(sum((x-Xtn).^2, 1));
27

28# eudist(x) is the sum of all Euclidean distances between x and each vote.
29eudist = @(x) sum(eudists(x), 2);
30

31# eudist_grad(x) is the gradient of eudist(x) as a column vector ,
32# used to aid optimization.
33eudist_grad = @(x) sum((x-Xtn) ./ eudists(x), 2);
34

35# The geometric median minimizes the sum of all Euclidean distances:
36g = sqp(mean(Xtn , 2), {eudist , eudist_grad });
37

38# mandist(x) contains the Manhattan distances between x and each vote
39# plus a tie -breaker (weighted 1/2) in favor of the geometric median.
40mandist = @(x) sum(sum(abs(x-Xtn), 1), 2) + sum(abs(x-g), 1)/2;
41

42# mandist_grad(x) is the gradient of mandist(x) as a column vector ,
43# used to aid optimization.
44mandist_grad = @(x) sum(sign(x-Xtn), 2) + sign(x-g)/2;
45

46# excess(x) is the sum of the candidates ’ budgets minus 1.
47excess = @(x) sum(x, 1) - 1;
48

49# excess_grad_t(x) is the gradient of excess(x) as a row vector ,
50# used to aid optimization.
51excess_grad_t = @(x) ones(1, rows(x));
52

53# The solution minimizes the Manhattan distance (including the tie -breaker)
54# under the condition that the sum of the candidates ’ budgets is 1.
55w = sqp(g, {mandist , mandist_grad}, {excess , excess_grad_t });
56end

6


