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1 Problem

We have a certain budget or resource, e.g. 1000 person hours or $ 1,000,000 to
be assigned to d candidates (e.g. projects). We assume n voters, which each
propose a relative budget allocation for each candidate, e.g. (0.6,0.3,0.1) if
he/she/they wants to assign 60 % to the first, 30 % to the second, and 10 %
of the budget to the third candidate. In the following, X € R™*?isan x d
matrix containing all candidates as columns and all voters as rows. Xj; is
voter i’s desired relative budget for candidate j.

There are certain constraints on the voter’s ballots. Equations (1) below
ensure that no voter can spend less than 0% or more than 100 % on a particular
candidate on their respective ballot, and equations (2) ensure that each voter
must use 100 % of the total budget!.
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We search a suitable voting algorithm f : X — w, which maps all votes X
to a result w that assigns each candidate j a certain budget w; € [0,1]. For
the output w of the voting algorithm, we demand ) w; = 1 such that the total
available budget is spent, but not more:
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Moreover, the algorithm f shall be designed in such a way that each voter
has little incentive for tactical voting.

INote that in cases where there should be an option to not spend all resources, it’s always
possible to add another candidate labeled “save the money/resource”, if desired.



2 Proposed algorithm

Let ||z||; denote the Manhattan norm and ||z||2 the Euclidean norm of z, i.e.:
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We first calculate the geometric median ¢:
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Note that the geometric median may be undefined in the rare case of n being
odd and all votes being on a 1-dimensional line. In this case, we could use the
1-dimensional median and take the arithmetic mean of the two middle values.

Now the assigned budgets w; are:
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Here, > x; = 1 ensures that not more and not less than the total available

budget is used and @ serves as a tie-breaker, which corresponds to adding
half a vote for the geometric median.

3 Reasoning

Disregarding the tie-breaking and the constraint that the budget must be spent
and not be exceeded, the definition of w corresponds to minimizing the sum
of Manhattan distances between w and the votes X;. This can be seen as an
equillibrium process where each voter tries to increase the budgets for those
candidates where they desire a higher budget and to reduce the budgets for
those candidates where they desire a lower budget, and where each voter can
transfer the same amount at the same time but not increase or reduce the total
budget spent (i.e. each increase must have an accompanying reduction). Be-
cause it doesn’t matter how much higher or lower a voter’s wish for a particular
candidate’s budget is in this process, there is little incentive for tactical voting.
I.e. there is little incentive to express polarized opinions where a voter, for ex-
ample, assigns all resources to one candidate in the attempt to increase that
candidate’s budget further.



4 Examples

The following examples Fj have been calculated with the computer program

given in the next section.
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In examples E; through Ej3, tie-breaking is used and the results are also
equivalent to the geometric median g. Example E, shows a case where tie-
breaking is not needed and the geometric median has no influence on the result.



5 Implementation in Octave

function w = budget_voting(X)
# X is matrix with voters as rows and candidates as columns;
# each entry reflects a budget assigned by the voter to the candidate.

# Xt is X transposed, i.e. candidates as rows and voters as columns.
Xt = transpose(X);

# Xtn is Xn normalized such that each voter assigns a total budget of 1.
Xtn = Xt ./ sum(Xt, 1);

# eudists(x) contains the Euclidean distances between x and each vote.
eudists = @(x) sqrt(sum((x-Xtn). 2, 1));

# eudist(x) is the sum of all Euclidean distances between x and each vote.
eudist = @(x) sum(eudists(x), 2);

# eudist_grad(x) is the gradient of eudist(x) as a column vector,
# used to aid optimization.
eudist_grad = @(x) sum((x-Xtn) ./ eudists(x), 2);

# The geometric median minimizes the sum of all Euclidean distances:
g = sqp(mean(Xtn, 2), {eudist, eudist_gradl});

# mandist(x) contains the Manhattan distances between x and each vote
# plus a tie-breaker (weighted 1/2) in favor of the geometric median.
mandist = @(x) sum(sum(abs(x-Xtn), 1), 2) + sum(abs(x-g), 1)/2;

# mandist_grad(x) is the gradient of mandist(x) as a column vector,
# used to aid optimization.
mandist_grad = @(x) sum(sign(x-Xtn), 2) + sign(x-g)/2;

# excess(x) is the sum of the candidates’ budgets minus 1.
excess = @(x) sum(x, 1) - 1;

# excess_grad_t(x) is the gradient of excess(x) as a row vector,
# used to aid optimization.
excess_grad_t = @(x) ones(1l, rows(x));

# The solution minimizes the Manhattan distance (including the tie-breaker)
# under the condition that the sum of the candidates’ budgets is 1.
w = sqp(g, {mandist, mandist_grad}, {excess, excess_grad_t});
end

Note that this implementation may fail in the rare case of the geometric
median being undefined (even number of voters and all votes on one line).

e e S N

[~ S
AW N = O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42



